Constraints in Particle Swarm Optimization of Hidden Markov Models

نویسندگان

  • Martin Macas
  • Daniel Novák
  • Lenka Lhotská
چکیده

This paper presents new application of Particle Swarm Optimization (PSO) algorithm for training Hidden Markov Models (HMMs). The problem of finding an optimal set of model parameters is numerical optimization problem constrained by stochastic character of HMM parameters. Constraint handling is carried out using three different ways and the results are compared to Baum-Welch algorithm (BW), commonly used for HMM training. The global searching PSO method is much less sensitive to local extremes and finds better solutions than the local BW algorithm, which often converges to local optima. The advantage of PSO approach was markedly evident, when longer training sequence was used.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle Swarm Optimization for Hidden Markov Models with application to Intracranial Pressure analysis

The paper presents new application of Particle Swarm Optimization for training Hidden Markov Models. The approach is verified on artificial data and further, the application to Intracranial Pressure (ICP) analysis is described. In comparison with Expectation Maximization algorithm, commonly used for the HMM training problem, the PSO approach is less sensitive on sticking to local optima because...

متن کامل

Particle Swarm Optimization of Hidden Markov Models: a comparative study

In recent years, Hidden Markov Models (HMM) have been increasingly applied in data mining applications. However, most authors have used classical optimization ExpectationMaximization (EM) scheme. A new method of HMM learning based on Particle Swarm Optimization (PSO) has been developed. Along with others global approaches as Simulating Annealing (SIM) and Genetic Algorithms (GA) the following l...

متن کامل

An efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization

This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...

متن کامل

Hidden Markov Models Training by a Particle Swarm Optimization Algorithm

In this work we consider the problem of Hidden Markov Models (HMM) training. This problem can be considered as a global optimization problem and we focus our study on the Particle Swarm Optimization (PSO) algorithm. To take advantage of the search strategy adopted by PSO, we need to modify the HMM’s search space. Moreover, we introduce a local search technique from the field of HMMs and that is...

متن کامل

3D Optimization of Gear Train Layout Using Particle Swarm Optimization Algorithm

Optimization of the volume/weight in the gear train is of great importance for industries and researchers. In this paper, using the particle swarm optimization algorithm, a general gear train is optimized. The main idea is to optimize the volume/weight of the gearbox in 3 directions. To this end, the optimization process based on the PSO algorithm occurs along the height, length, and width of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006